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1. INTRODUCTION

This paper is concerned with the derivation of a relationship between the net
force, the end displacement, and the stress intensity for cracked rectangular spec-
imens with constrained ends. Two cracked-panel configurations are considered: an
edge crack and a center crack. The relationship is generally derived using the
edge crack case as an example and via a change in appropriate geometry parameters
the center crack case is also solved.

2. [EDGE CRACK

As an example, in Reference 1 the case of an edge crack in a rectangular panel,
Figure 1, was considered with displacement end conditions

V=0,U

Up (constant) on CD
(1)

V=0, U= -Uy on AB

The results were normalized with respect to an averaged applied stress Ops where
C
op = (1/h) fD o dy. (2)

In Reference 2, similar results were presented for the center-cracked rectan-
gular panel. Yet if o4 is regarded as fixed (with respect to L), then Uy = U(L)
and vice versa. If the alternate normalization with respect to Uy is preferable,
then a relationship between Uy, op, and the stress intensity factor K is necessary
for the interpretation of the results presented in References 1 and 2.

y
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Figure 1. Edge crack in a rectangular panel.

1. BOWIE, O. L., et al. Solution of Plane Problems of Elasticity Utilizing Partitioning Concepts. J. Applied Mechanics, v. 95,
1973, p. 767-172.
2. BOWIE, O. L. Methods of Analysis and Solutions of Crack Problems (Chapter I). G. C. Sih, ed., Noordhoff International

Publishing, Leyden, 1973.
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Although the basic results of this paper can be arrived at by compliance argu-
ments, we choose a more interesting approach from an analytical point of view by“
utilizing an extension of the 'weight function" arguments of Bueckner3 and Rice.

First, we summarize the original weight function argument with Rice's notation
as follows: Neglecting body forces and considering only those configurations con-
sistent with Mode I behavior, we assume that a solution has been found for a given
geometrical configug%t'on "1 with boundary 1, crack length L, for an applied load
with stress vector t‘!/(x,y), a funct%o? of position only. The correspg?ding stress
intensity factor wil% ge denoted by K 1 (L) and diip}acement vector by U 1 (x,y,L).
It is assumed that t'l)(x,y) is chosen such that K'1/(L) # 0. Then, for the same
gigTetrical configuration and any load system ''2'" with an applied stress vector
t

(x,y) consistent, of course, with Mode I behavior,

(2)

2k 1y

—(1)
). &~ ar, (3)

w=n [T
T

where H = E/(1 - v?) for plane strain and H = E for plane stress. In _Equation 3,
it is assumed that /7 is included in the definitions of K(1J(L) and k(2T (1), i.e.,
in the vicinity of the crack tip

o~ K(L) (2nr) /2. 4)

For the problems of end constraints, the stress vector on the ends is a func-
tion of the parameter L as well as position, thus Equation 3 is not applicable.
The Reciprocal Theorem of Betti ag% ?ayleigh used in deriving Equation 3 can be
easily extended to the case when t - (x,y,L) is a function of both position and

the parameter L. In fact,

(1) (1)
20y Dy - n [ {;(2). &8 L, (5)
i 4

’ S —(1 i ;
which reduces to Equation 3 wheg_dt( )LﬁL = 0. We shall be concerned primarily
with the situation when tcl) = t(z) = t. Then, with obvious notation

2[K(L)]2=Hf{?-%ﬁr-ﬁ--fl—t dr. (6)
k3

Consider now the displacement boundary value problem defined by Equation 1.
Assume that a solution has been found for a fixed end force, i.e., o, is indepen-
dent of L. Then Uy must be considered as a function of L. Utilizing symmetry
and Equation 6,

h 2
dUp do (1)
Hf o, S0y, tay=|xPa
0 X dL 0 3L Y (L) (7)
3. BUECKNER, H. F. A Novel Principle for the Computation of Stress Intensity Factors. Z. Angew. Math. Mech., v. 50, 1970,
p. 529-546.
4. RICE, J. R. Some Remarks on Elastic Crack-Tip Stress Fields. International Journal Solids Structures, v. 8, no. 6, June 1972,
p. 751-758.
2




or h

h 2
Hg%o-{ oxdy-HUOg—L{J; oxdy}=[|((l)(l.)] ,

2

Hhop U (L) = £L[K“)u)]2d5+ch

where the constant of integration C; must be chosen such that Equation 8 is con-
sistent at L =

If, on the other hand, a solution has been found normalized with respect to
a constant value of Uy, Equation 6 becomes

-Huf dox gy - [K(z)(L)]Z, (9)

or
L 2 .
HUgh o, (L) = - JE [K(z’(z)] d& + C}, (10)

where for a fixed value of Uy, oA(L) is a decreasing function of L. In fact,
op(h) = 0 and

Ci=]3‘[K&)u)]2dL (1)

The constants of integration C; and Ci cannot be derived in a direct rigor-
ous manner owing to an unknown distribution of shear stresses on the ends. For
practical purposes, however, its value can be established by the following argu-
ment: Consider the two load systems in Figure 2. We choose

oil) = = h-1 !;/2 (Z)dy. (12)
and
oV = [m/2w) - 1) 0

where u is the shear modulus. For this load system, the displacement V in system
"1'" vanishes and

v . (=t - H/4u?2] opx. (14)

Applying the Reciprocal Theorem,

W
Ughop = o5 [u-d - /a2 ] B awaw - 1) oy VP ax. (15)
A 2 A W/
- 2
3
c—— -m‘s—“ W PR—— S — . - e ——.




Although we do not know V(z) explicitly it is evidently a measure of the
veitical contraction of System '"2". It is evident physically that if we assume
v(®) = 0, a lower bound on Uy is obtained from Equation 15,

Ughop 2 oy [u-l - H/4u2] %—, (16)

with equality for W/h << 1.

On the other hand, a reaso?ggly accurate upper bound can be found by assuming
a uniform lateral contraction V = [H-1 - 1/2u]oAh/2, which leads to

2
Ughop < Oa Wh/2H. (17)
On the basis of numerical results for W/h = 1, the equality sign in Equation 17
can be taken with satisfactory accuracy. On physical grounds, the accuracy of
this approximation increases with increasing W/h. Thus,

2
C; = o Wh/2, W/h > 1. (18)

By introducing the function [MoA(L/h)] where

K(L/h) = [MUA(L/h)] o (TL) %, (19)
y ag) y
AL AR NARRARA }
-— — (1) I
o l e :: | 2
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Figure 2. Load systems ‘1" and "2".




Equations 8 and 18 can be written in this notation as
5 : (M5, 1/m]
H (33-1) (vL)*

L7h - (20)
1+ 2n(h/w) [ [MUA(L/h)] (L/h) d(L/h)

Regarding the constant Ci, when Uy is kept fixed, we have from the geometry
of Figure 1 that when L = 0

C' = HhUgo,(0) = HhU, (ZHTUQ) (21)
or
C1 = 2H2UZ (h/W).

Similarly, if the function [MUO(L/h)] is defined as

K(L/h) = [MUO(L/h)] H (2—39-) (nL)* (22)
Equations 10 and 21 can be written as
B My, (L/h) -
ax(iL)d L/h 2 :
A 1 - 2n/w) [MUO(L/h)] (L/h) d(L/h)

Note when h/W -~ 0 or L/h +~ 0 from Equation 20 or 23 we have

[y, am] = [, am], (24)

as expected.

The validity of the approximations to C; and C{ in Equations 18 and 21 is
implemented through the use of Equations 20 and 23 and illustrated in Table 1
using results of Freese.* His data corresponds to the plane stress constrained
end problem with h/W = 0.983 and v = 0.35.

Equation 20 was used to obtain [MUO(L/h)] from the data given in Reference 1,
where [MU (L/h)] was given for the loading case described by Figure 1, for v = 1/4.
A

These results are shown in Table 2.

Shown in Table 3, for comparison, are some other known results for this prob-
lem from A. S. Kobayashi and S. Mall reported in Reference 5, for W/h = 3. It is
seen that the greatest difference between the results reported here and those
given in Reference 5 is approximately 6% occurring at L/h = 0.70.

*FREESE, C. E., Army Materials and Mechanics Research Center, private communication, 1975.

5. QUACKENBUSH, C. L., and FRECHETTE, V. D. Crack-Front Curvature and Glass Slow Fracture., J. Am. Ceram. Soc., v. 61,
nos. 9-10, September-October 1978, p. 402-406.
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Table 2. NORMALIZED STRESS INTENSITY FACTOR
Table 1. NORMALIZED STRESS INTENSITY FACTORS FOR AN EDGE CRACK IN A RECTANGULAR PANEL
K
M (L/h)] = —r [M (L/h)] [M (L/h)] - K
—i e —
(" HOSR) (L) °A o('n 1) Yo H (20 ) ()"
Freese Freese v * 14
L/h Data Eq. 20 Data Eq. 23 w\/h
0 L/h 1 8 4 8 12 16
0.10 1.03 1.00 1.03 1.03 0
.20 0.86 0.85 0.95 0.9
.30 74 73 .92 '92 0.05 1.01 1.1 13 .33 .13 1.13 1.313
‘% e 65 ‘93 93 0 0.97 1.0 1.14 1.5 1.16 1.18 1.18
- O "8 98 ‘08 B B T8 LM 1A 127 1L¥ 1.3
.60 .54 53 1.09 1.09 .30 I3 0.99 1.4 1.23 1.4) 1.49 1.53
.70 .50 .49 1.28 1.28 .40 .64 Sl Y00 1.2¢ 1,55 1.720 1.79
.80 .46 .46 1.63 1.63 .50 .58 .83 1.04 1.21 1.65 1.90 2.07
.60 .53 L5 0.95 1.12 1.67 2.08 2.32
.70 .49 .69 .86 1.02 1.58 2.03 2.40
Table 3. COMPARISON OF [MUO(L/h)] WHEN W/h =
From Eq. 20
and Ref. 1 From Ref. 5 Differ-
L/h = 1/4 =0.23 ence (%)
0
0.05 113 1.1 -2
.10 1.14 1.1 -3
.20 1.14 1.1 -3
.30 1.14 1.09 -4
.40 1.10 1.05 -5
.50 1.04 0.99 -5
.60 0.95 .90 -5
.70 .86 .81 -6
3. CENTRAL CRACK

When we apply the Rice type of argument to the central crack shown in Figure 3,

we fix end A and consider a perturbation of the end B.

} dx = [K(a)]%,

obvious change in notation
h/z
'{.y ds

UodU
da

where K(a) is the stress intensity at B.
notation a = 2L, then K(a) is equivalent to the conventional K(L).

do
{ y d(2L) Vo 3215 } -

that now

h/2
: j;/z

leading to

Equation 7 holds with the

(25)

Now suppose we introduce the conventional

[K(L)]2,

Note, however,

(26)

iz
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Figure 3. Center crack in a rectangular panel.
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Y%
Hho gg—L = [KO)12. 27)
Thus Equation 8 now becomes
Hho \Ug (L) = 2 foL [K(E)]2 dE + Cy. (28)
The constant C; = oi Wh/2, W/h > 1 so that
HhoaUg (L) = of Wh/2 + 2 f" [Keg) 12 de + C;. © (29)
0

Substituting C; into Equation 29 and proceeding as before, but with
1
K = [Mc (2L/h)] op(nL) 2, (30)
A

for the center-cracked panel, we can rewrite Equation 29 as
: [Mpp21m]

b (3%1) (L)% 1 + n(h/W) J:)ZL/h[MUA(zL/h)]Z(2L/h)d(2L/h)'

(31)
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Regarding the constant C{ for the center crack case, but allowing for a factor
of 2, 1.0.,

HUghop (L) = Cy - 2 j;L[K(E)JZ de, (32)

and when Uy is fixed but letting L = 0 from Figure 3, we have

Ci = Hh Ugo(0) = Hh Ug (3%91)

or

C1 = 2H2U2 (h/W),
as determined before for the edge crack case.

Substituting Ci into Equation 32 and defining K for the center-cracked panel
as

K = [ MUO(ZL/h)] H (E%Q) (nL) %, (33)

we finally obtain

K [ @)

o= , ; (34)
o(L)(TL)? 1 - m(h/W) j;ZL/h[MUO(ZL/h)]Z(ZL/h)d(ZL/h)

Again as expected, it is noted that when h/W - 0 or 2L/h + 0, Equations 31
and 34 reduce to

[MUO(ZL/h) ] z [MUA(ZL/h)] 3 (35)

4. CLOSING COMMENTS

Equation 24 or 35 can serve as a check on the accuracy of known results when
h/W > 0 or L/h - 0 for the edge crack, and 2L/h »+ 0 for the center-cracked panel
subjected to uniform normal displacement. Further, Equation 11 can be used to
provide a check on the limiting end point, i.e., L/h = 1.0 for the edge crack or
2L/h = 1.0 for the center crack, if rMUO(L/h)j or [MUO(ZL/h)j are known.

It is expected that the method outlined in sections 2 and 3, although speci-
fically applicable to an edge- or center-cracked panel, can be generally applied
to other cracked-body configurations subjected to displacement type loadings.

The results of the method described here are particularly useful if the stress
intensity factor is known only as a function of the applied load and it is desired
as a function of the normal displacement, or vice versa.
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